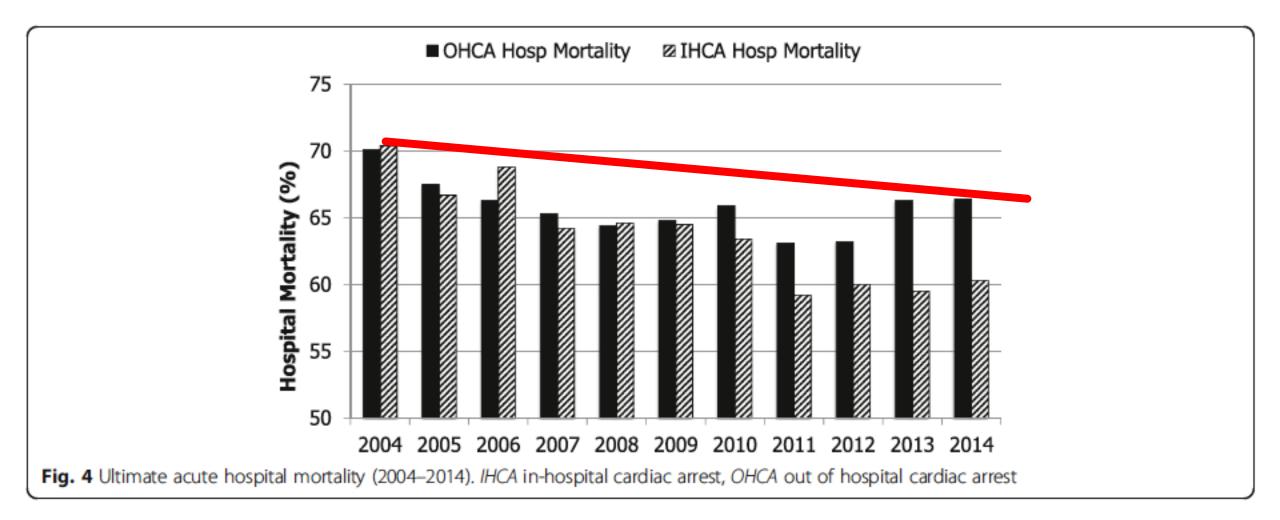


Extracorporeal Life Support (ECLS)

Moderatore: A. Spagna

Discussant


M. Rugna, A. Peris, G. Gerosa, M. Raimondi, P. Rosi

ADRIANO PERIS- CURE INTENSIVE DEL TRAUMA E SUPPORTI EXTRACORPOREI AOUC- FIRENZE

PLANNING

- 1. Basics of ECLS oriented to OHCA
- 2. ECLS: missing link or process
- 3. Point of view
- 4. Reengineering or not
- 5. Final remarks

Intensive Care National Audit & Research Centre (ICNARC) Case Mix Programme Database (CMPD) for the period 1 January 2004 to 31 December 2014.

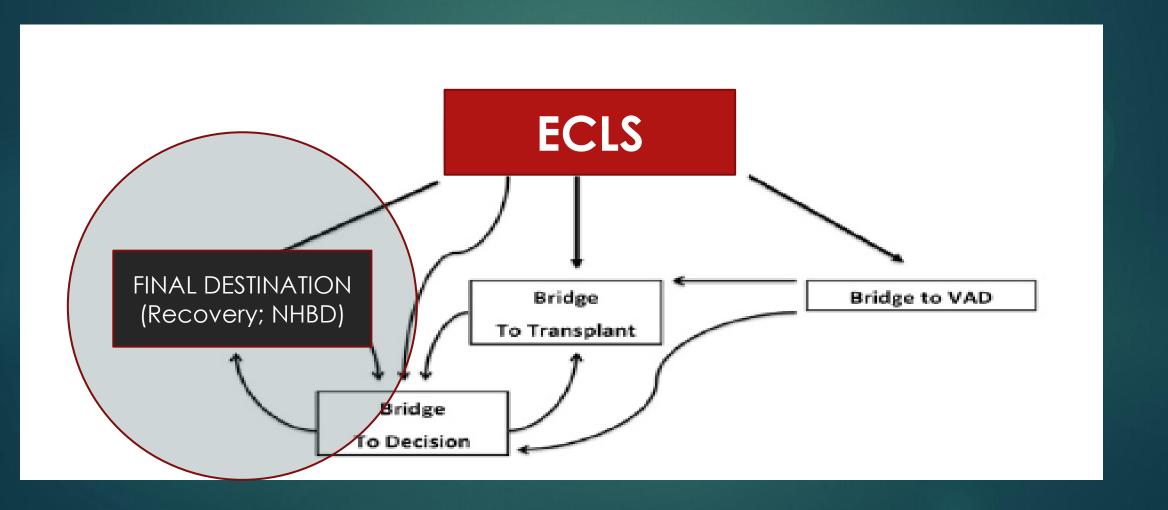
1. Basics of ECLS oriented to OHCA

For the lung

Acute Respiratory Failure

For the heart

Cardiac arrest


Cardiac Shock

1.1 Basics of ECLS oriented to CA

► ECLS to assist CPR (ECPR) both in hospital cardiac arrest (IHCA) and in out-of-hospital cardiac arrest (OHCA)

Probability to ROSC decreases with the duration of CPR

1.2 ECLS: missing link or process

2. ECLS: missing link or process

J. Soar et al. / Resuscitation 95 (2015) 100-147 **Advanced Life Support** Unresponsive and not breathing normally? Call Resuscitation Team **CPR 30:2** Attach defibrillator/monitor Minimise interruptions Assess rhythm Shockable Non-shockable (VF/Pulseless VT) (PEA/Asystole) Return of 1 Shock Minimise spontaneous circulation interruptions \ IMMEDIATE POST-Immediately resume Immediately resume **CARDIAC ARREST** CPR for 2 min CPR for 2 min TREATMENT Minimise interruptions Minimise interruptions ■ Use ABCDE approach ■ Aim for SaO, of 94-98% Aim for normal PaCO, ■ 12-lead ECG ■ Treat precipitating cause Targeted temperature management

ECLS

ERC 2015: ALS ALGORITHM

DURING CPR

- · Ensure high quality chest compressions
- Minimise interruptions to compressions
- Give oxygen
- Use waveform capnography
- Continuous compressions when advanced airway in place
- Vascular access (intravenous or intraosseous)
- Give adrenaline every 3-5 min
- Give amiodarone after 3 shocks

TREAT REVERSIBLE CAUSES

Hypoxia Thrombosis – coronary or pulmonary

Hypovolaemia Tension pneumothorax Hypo-/hyperkalaemia/metabolic Tamponade – cardiac

Hypothermia/hyperthermia

Toxins

CONSIDER

- Ultrasound imaging
- Mechanical chest compressions to facilitate transfer/treatment
- Coronary angiography and percutaneous coronary intervention
- Extracorporeal CPR

www.erc.edu | Info@erc.edu

Published October 2015 by European Resuscitation Council vzw, Emile Vanderveidelaan 35, 2845 Niel, Belgium Copyright: © European Resuscitation Council vzw Product reference: Poster_ALS_Algorithm_ENG_20150930 2.1 ECLS: missing link or process

2.2 ECLS: missing link or process

Variable entry criteria

- ▶ Initial conventional CPR is failing
- ▶ Standard ALS measures are not successful
- ► ECLS to take time(CAn/PCI)
- ► VA-ECMO after successful resuscitation
- Refractory cardiogenic shock when all else fails

2.3 ECLS: missing link or process

Propensity studies: which patient for ECLS

The propensity score reflects the probability of receiving ECLS therapy

- location of the arrest (IHCA versus OHCA)
- witnessed or unwitnessed arrest
- presumed cardiac origin
- duration of CPR

Subjects with similar clinical characteristics

2.4 ECLS: missing link or process

Results.....

Propensity Score (IHCA)

- Short- and long-term benefits over CCPR irrespective of ROSB/ROSC.
- No difference in survival or neurological when administered after ROSB/ROSC following prolonged CPR

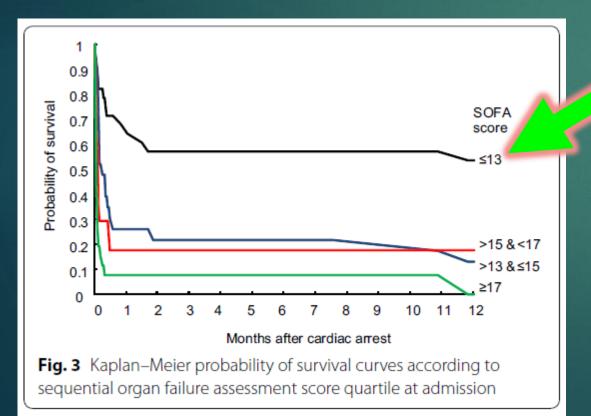
(Lin, 2010)

Meta-analysis (generic)

"continuous field of cardiac failure, ranging from cardiogenic shock to cardiac arrest"

- Refractory cardiac arrest: increased survival and favourable neurological outcomes in the ECLS
- Cardiogenic shock: increased survival with ECLS compared with IABP.
- ► ECLS as an adjuvant therapy for not only IHCA, but also for OHCA.

(Wang, 2014; Ouweneel1, 2016)

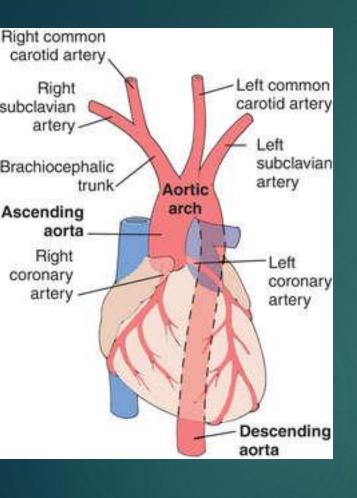

3. POINT OF VIEW

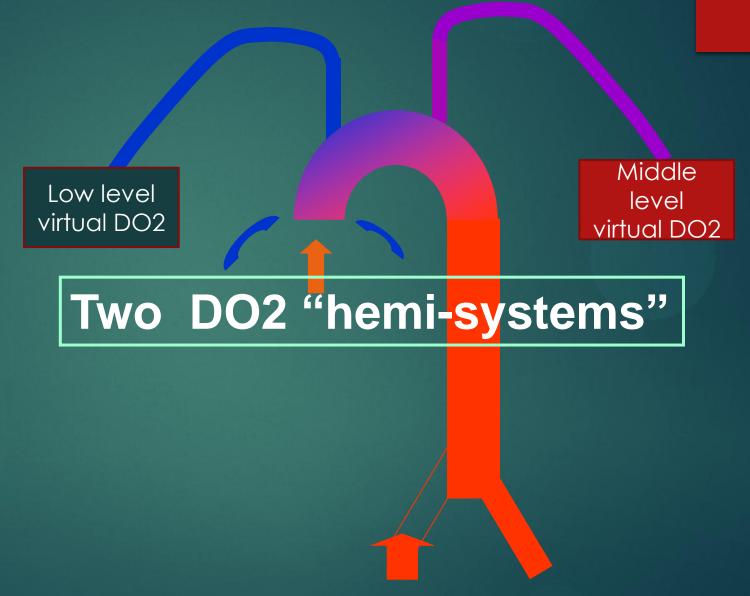
Situations perceived as favorable in ECLS

- Witnessed cardiac arrest
- ► Shockable rhythms
- ▶ High quality cpr
- ▶ Little comorbidity
- Severe hypothermia
- Poisoning
- Myocardial infarction
- Pulmonary embolism

3.1 POINT OF VIEW

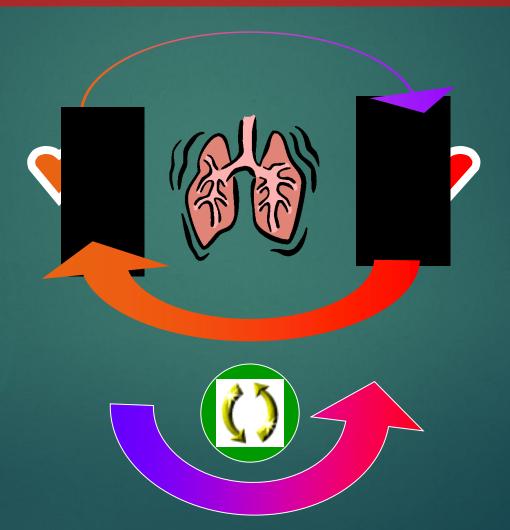
ECLS vs Multiorgan Disfunction in refractory cardiogenic shock post-cardiac arrest


(Pineton, 2016)


3.2 POINT OF VIEW ON ECLS

 Adequate global oxygen delivery (CO x CaO2) needs to be upgraded to a more extensive multiple organ support concept

2. PreHosp/Hosp interface: transition from one phase of central low flow (preH) towards a phase of compartmental flow (inH)


3.3 POINT OF VIEW

3.4 POINT OF VIEW

Veno-Arterial By-Pass with Reduced Pulmonary Flow

3.5 POINT OF VIEW

Anticipates ECLS in Preh

- ▶ Flow maintenance
- ► Screening for ECLS
- ► Limit target organ hypoxemia
- ► Save target vessels
- ▶ If ROSC manage CO2

4. REENGINEERING OR NOT

► ECLS systems are not available everywhere

▶ ECLS is intended to gain time

4.1 NEED RENGENEERING OR NOT

ECLS what changes in hospital

- Reproducibility of fasttrack
- Strong preH system conditioning
- ▶ Process-outcome
- Widespread pathtechnology

What asks ECLS team to 118

- Sharing propensity score approach
- Sharing Health Technology Assessment
- Flow maintenance
- Limit target organ hypoxemia
- Control CO2 if ROSC
- ▶ Adapting Skills

5. Final remarks

- ►ECLS: process that starts from the territory
- Main theme: flow continuity
- Consensus on patient recruitment in prehospital phase
- ▶ ECLS anticipation